САХАЛИНСКИЙ ПОИСКОВИК

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » САХАЛИНСКИЙ ПОИСКОВИК » Консервирование и Реставрация » Реставрация изделий из меди и сплавов из меди.


Реставрация изделий из меди и сплавов из меди.

Сообщений 1 страница 4 из 4

1

Реставрация изделий из МЕДИ И СПЛАВОВ ИЗ МЕДИ (Методические рекомендации)
1. Некоторые сведения об истории медных сплавов

Древние мастера по металлу не оставили описаний приемов обработки и составов сплавов, применявшихся для изготовления разных предметов. Такая литература появляется только в средневековье, но в ней названия сплавов и терминология не всегда поддаются расшифровке, поэтому источником сведений являются исключительно сами вещи. Существует множество работ, посвящённых результатам исследований древних предметов. Из них мы узнаем, что первое появление изделий из меди археологи относят к VII тыс. до н.э. Это были кованые предметы из самородной меди. Затем появляется металлургическая медь и сплавы меди с другими металлами. На протяжении нескольких тысячелетий в основном из меди и ее сплавов изготавливались различные предметы: орудия труда, оружие, украшения и зеркала, посуда, монеты. Составы древних сплавов весьма разнообразны, в литературе их условно называют бронза. К наиболее ранним относятся мышьяковистые и оловянистые бронзы. Кроме олова и мышьяка в древних

сплавах часто присутствует свинец, цинк, сурьма, железо и другие элементы в виде микропримесей, которые попадали в металл с рудой. Состав сплава подбирался весьма рационально в зависимости от функционального назначения предмета и используемой техники изготовления. Так, для литья художественных изделий был выбран рецепт тройного сплава медь-олово-свинец, применявшийся в античной Греции, в Римской империи, на Ближнем и Среднем Востоке, в Индии; в Китае бронза была одним из самых распространенных сплавов. На литых предметах из такой бронзы со временем образуется красивая патина, которая в некоторых случаях сохраняется и на археологических предметах.

Сплавы получали не только из чистых металлов, но и путем смешивания различных руд, в результате чего получали такие сплавы как латунь и медно-никелевый сплав, за много веков до того как научились добывать металлический цинк и никель. Латунь впервые

упоминается в VIII в. до н.э. Известный исследователь древних технологий Форбес считает, что народы Малой Азии первыми стали получать латунь. В новое время металлический цинк и латунь впервые получили в Англии лишь в 1738- г.

Большое значение при изготовлении вещей имел цвет металла ------- шлифовки и полировки. В средневековых источниках ------ называются по цвету: красная медь, латунь - желтая медь; зелёная медь - бронза, белая медь или белая бронза- светлые сплавы. С XVIII века в связи с развитием промышленности и возможностью получать различные металлы в чистом виде возникли новые композиции сплавов. Большое распространение получили сплавы, похожие по цвету на золото. Как правило, они состояли из меди, цинка и олова в разных соотношениях.

В зависимости от состава бронза условно делалась на медальную (монетную), в которой олова - 3-8%, цинка - 1%; пушечную, содержащую 10% олова; колокольную, в которой олова 20%, и зеркальную - 30% олова. В XVIII в. появились разнообразные сплавы на основе меди. Ормолу - разновидность латуни, в состав которой входят в равных частях медь и олово или только медь и цинк. Ормолу применялась главным образом для украшения французской мебели и мебели, выполненной во французском стиле. Иногда отливки из ормолу обрабатывали гравировкой или золотили. Гравированный рисунок делали более рельефным путем втирания черного пигмента. Латунь шла также для выделки самоваров, кофейников и других предметов домашнего обихода, осветительных приборов, ручек, кухонной утвари; некоторые предметы лудились. Латунь, содержащая до,10% цинка, называлась томпак. Она широко использовалась в XVIII веке для изготовления дешевых ювелирных украшений. Латунь с содержанием до 20% цинка называлась полутомпак, с 30% цинка - адмиралтейская латунь. Сплавы на медной основе мельхиор и нейзильбер - использовались как заменители серебра. В старой литературе нейзильбер иногда называется аргентан, варшавское серебро, иногда этим названием определяется посеребренная латунь. Отсутствие четкого соответствия названия составу привело к тому, что даже в справочной и специальной литературе позднего времени даны разные составы этих сплавов или разные названия одного сплава. Поэтому приводим определение этих двух похожих по внешнему виду сплавов, данное в Энциклопедическом словаре 1985 г. Мельхиор - сплав, изобретенный во Франции, содержит в своем составе медь главным образом с никелем (5-30%). Обладает высокой стойкостью на воздухе и в воде, хорошо обрабатывается.

Нейзильбер (буквально, новое серебро) - немецкий сплав, содержащий медь - основа, никель (5-35%) и цинк (13-45%). Обладает высокой коррозионной стойкостью и прочностью, удовлетворительной пластичностью.

Сплавом XX века является алюминиевая бронза с содержанием 5% алюминия. Этот сплав прекрасно обрабатывается и по цвету похож на золото. Иногда его называют французским золотом. Французким золотом называют также сплав, состоящий из 58% красной меди, 16% олова и 25% цинка, цветом и блеском действительно похожей на золото. Так называемый британский металл состоит из олова, сурьмы с добавлением меди. Этот сплав обладает прекрасными литейными свойствами, легко обрабатывается

инструментами, хорошо принимает полировку и не тускнеет на воздухе. Из него изготовляли в большом количестве предметы домашнего обихода.

Таким образом, видим, что по названию, которое дается в старых руководствах по обработке металлов и справочниках, определить состав и содержание в сплаве легирующих элементов сплава трудно.

Технология изготовления различных предметов из металла также претерпела эволюцию: первые изделия изготовлялись холодной ковкой, затем было освоено литье, сначала в открытую форму, затем в закрытую и., как наиболее развитая техника литья, литье по выплавляемым моделям; восковое литье в Египте было уже в III тыс. до н.э. Холодной ковке на смену пришла горячая ковка и использование термообработки для получения специальных свойств металлов. По-разному конструктивно оформлялись предметы, в определенный период появляется ковочная сварка, пайка, сочетание кованых и литых элементов. Предметы перестают иметь чисто утилитарное значение; украшаются насечкой и инкрустацией ножны и рукояти мечей и кинжалов, становятся нарядными элементы конской упряжи и снаряжения всадников, появляется художественно украшенная посуда. Получают развитие различные технические и ювелирные приемы работы с металлами. Нужно заметить, что все это уходит в глубокую древность. Так, в царских гробницах Ура (29 в. до н.э.) был найден золотой кинжал в ножнах, в декорировке которого применялись зернь и филигрань. С древнейших времен стали использовать украшение предметов из меди и медных сплавов другими металлами. Золотилась или серебрилась вся поверхность или выявлялся таким способом рисунок. Появляется инкрустация из золота и серебра. Некоторые предметы декоративно-прикладного искусства из металла имели искусственную патину. Первые опыты по патинированию металлов начались, видимо, в Европе с эпохи Возрождения, вдохновленной открытием античного искусства. Искусство барокко почти всегда предпочитало светлый блестящий металл. В предметах прикладного искусства в стиле рококо старались еще более усилить блеск, чистой бронзы обильным применением позолоты и сплавов, имитировавших золото. Золочение; было очень разнообразным., В ХVIII в. появляется матовое золочение, позолота различных оттенков. Иногда на одной вещи сочеталось матовое и блестящее золочение. Лишь в конце XVIII - нач. XIX в. искусственная патинировка опять входит в моду. Её вдохновителем явилась античность после раскопок Помпеи и Геркуланума. Своеобразное применение она нашла в стиле ам-пир. Патинировались отдельные детали бронзовых украшений мебели, часов, подсвечников. Почти всегда патинирование детали сочеталось с золочением. Плотная черно-зелекая патина, нанесённая без учета моделировки, полностью скрывала цвет металла. Массовое патинирование под старину началось с середины X века. В это время было создано большее число всех известных ныне способов патинировки. Кроме патинирования химическими веществами, применялись пигменты на связующем, масляное горячее патинирование, покрытие цветным лаком. Способы патинировки были секретом мастера или мастерской.

2. Коррозия меди и медных сплавов

Атмосферная коррозия. В атмосферных условиях медь и ее сплавы покрываются тонким равномерным слоем продуктов коррозии, Образование пленки - самозатухающий процесс, т.к. продукты коррозии защищают поверхность, металла от взаимодействия с внешней средой. Процесс образования пленки состоит из двух ровных стадий. Первая - образование первичной пленки, представляющей собой смесь оксидов и чистую закись меди. Время образования этого оксидного слоя - от нескольких месяцев до нескольких лет. С течением времени этот слой приобретает характерный для медных сплавов коричневый цвет. В отдельных случаях этот слой темнеет и может стать черным. При достижении некоторой толщины оксидного слоя на нем начинает образовываться зелёный слой солей меди. Наиболее вероятными химическими соединениями, образующимися на меди в результате коррозии, являются природные минералы. Цвет (состав и строение коррозийного слоя) зависит от присутствия в воздухе различных газов, твёрдых частиц разных веществ и др., а также от состава медного сплава.

В условиях музейного хранения процесс образования сложных по составу пленок на медных сплавах идёт чрезвычайно медленно. Тонкий и равномерный коррозионный слой покрывает всю поверхность, воспроизводя все мельчайше детали декоративной отделки, вплоть до гравировки. На выступающих деталях рельефа он стирается, и сквозь утоньшенный слой просвечивает поверхность металла. Образовавшийся на поверхности медного сплава слой, обладающей определенными физико-химическими свойствами, делающими его защитным и придающими различную окраску - от коричневой и черной до различных оттенков зеленой и голубой, называется патиной Цвет патины зависит не только от длительности взаимодействия с атмосферой и ее состава, но и от состава металла, качества его обработки, т.е. от внешних и внутренних факторов.

Все сформировавшиеся атмосферные патины содержат оксиды и соли. Окись меди - черного цвета, закись - красно-коричневого. Зеленые, синие и голубые цвета и оттенки патине придают различные медные минералы: сульфаты - брошантит, антлерит, средние сульфаты в виде кристаллогидратов с различным количеством кристаллизационной воды, которые являются промежуточными продуктами при образовании зеленой патины; карбонаты меди; малахит и азурит; нитраты; хлориды в виде атакамнта, паратакамита и боталлакита; иногда в патине обнаруживают хлористую медь и кристаллогидрат хлорной меди. Практически все оксиды и соли меди, образующие патину, нерастворимы в воде, негигроскопичны, нейтральны по отношению к металлической меди, за исключением хлористой меди, т.е. патина является естественной защитной и декоративной пленкой.

Почвенная коррозия меди и ее сплавов. Коррозионные продукты на археологических изделиях из меди и медных сплавов имеют более сложный состав и строение. В основном они содержат продукты коррозии меди - медные оксиды и соли, как основы слоя, меньше - оксид олова; продуктов коррозии других элементов входящих в состав сплава, как правило, на поверхности предмета не обнаруживают. Коррозионное наслоение имеет слоистое строение с четко выраженными границами слоев. Однако СЛОИ НЕ ПЕРЕКРЫВАЮТ всю поверхность, а располагаются на отдельных участках. . Порядок расположения слоев устойчив. Наружный слой состоит ИЗ углекислых солей меди, соединенных с почвой и органическими остатками. Эти слои, идентичные по своему составу природному минералу малахиту, имеют бугристую неровную поверхность. Малахит часто смешан с азуритом синего цвета. Кроме углекислых солей, во внешнем слое содержится хлорная медь-атакамит. Иногда атакамит образует основную часть внешнего слоя, иногда отдельные пятна светло-зеленого цвета. Наружный слой продуктов коррозии на бронзе устойчив и при изменении внешних условий, например, при извлечении из почвы, превращений в нем не происходит.

Следующий слой, примыкающий к сохранившемуся металлу, отличается от внешнего и по цвету, и по кристаллическому строению, и по фактуре. Он красно-коричневого цвета. Основу этого образует минерал куприт, представляющий собой закись меди. Куприт очень тверд и хрупок. В куприте наблюдаются включения окиси меди черного цвета. Толщина такого оксидного слоя различна. Иногда вся сердцевина предмета состоит из оксидов с незначительными вкраплениями сохранившегося металла. В отдельных случаях куприт повторяет мельчайшие подробности рельефа.

Однако очень редко куприт образует сплошной слой на поверхности предмета, изолируя нижележащий металл, чаще он имеет трещины и полости.

В некоторых случаях под слоем куприта, а иногда и заменяя его, располагается прослойка металлической восстановленной меди, которая образуется в результате восстановительных процессов из медных солей при электрохимической коррозии. Вос-становленная медь может образовывать СПЛОШНОЙ СЛОЙ, так что при очистке создается обманчивое впечатление обнаженного металлического ядра. Иногда восстановленная медь залегает чешуйками, которые при очистке легко снимаются механически.

Между слоем восстановленной меди или куприта и металла расположена наиболее активная, нестабильная медная соль, ХИМИЧЕСКИ неустойчивая и очень гигроскопичная - хлористая медь. Хлористая медь самая опасная коррозионная составляющая археологической бронзы, которая при взаимодействии с влагой окисляется и гидролизуется, превращаясь в зеленую основную хлорную медь атакамит. При этом в реакцию вовлекается металлическая медь, еще не разрушенная коррозией. Хлористая медь обычно серого или белого цвета, иногда окрашена примесями в зеленоватый цвет. За минерализованным слоем идет частично корродированный металл, коррозия в нем развивается по отдельным, наименее коррозионно стойким структурным составляющим. На оловянистой бронзе наблюдаются локальные выделения продуктов коррозии оловян-ной составляющей бронзы - двуокиси олова, которая соответствует минералу касситериту. Таким образом, характерной особенностью почвенной коррозии медных сплавов является образование слоев. Толщина коррозионного слоя различна: от долей миллиметра (при сохранившемся металлическом ядре) до того предельного случая разрушения, когда весь металл оказывается минерализованным.

Очень редко коррозионный слой на археологической бронзе бывает тонким и плотным, оливково-зеленого, зелено-голубого оттенков, и производит впечатление специально нанесенного. По составу такая благородная патина не отличается от грубых наслоений продуктов коррозии. Образование такого слоя требует, видимо, особых внешних условий и высокого качества обработки металла. Как правило, такая патина очень тверда и прочно держится на поверхности металла. Этот слой изолирует предмет от внешних воздействий. Однако даже благородная патина может содержать активную хлористую медь, которая даст рецидив коррозии в подходящих для ее развития условиях.

Внешний вид археологических предметов из меди и ее сплавов различен. Наблюдается устойчивая зависимость между видом разрушения, составом и способом изготовления предмета. Особый вид патины образуется на литых высокооловянистых бронзах, со-держащих небольшие, порядка нескольких процентов, добавки свинца (например, китайские зеркала). Поверхность таких-предметов покрыта гладким светло-серым слоем, иногда ошибочно принимаемым за серебрение. Обманчивое впечатление золочения создается за счет сохранения на отдельных участках поверхности зеркал и посуды, металл которых содержит более 20% олова, блестящей поверхности золотистого цвета в сочетании с бугристыми зелеными участками поверхности.

Большинство медных сплавов склонны к межкристаллической коррозии. Она характеризуется разрушением металла по границам кристаллитов. При этом прочность металла уменьшается, он становится хрупким, оставаясь внешне крепким. На предметах, найденных при археологических раскопках, часто наблюдаются трещины, которые образуются в результате неравномерной коррозии, происходящей преимущественно в местах концентрации напряжений.

По степени сохранности археологические предметы из медных сплавов можно условно разделить на следующие группы:

I) предметы, покрытые благородной патиной

2) предметы, сочетающие благородную патину и бугристые или рыхлые коррозионные образования;

3) предметы из частично минерализованного металла, в котором сохранилось металлическое ядро, покрытое слоем продуктов коррозии; в такой сохранности чаще бывают литые бронзовые предметы и латунь, в том числе и кованая;

4) практически полностью минерализованный металл, основная масса которого превра-тилась в твердый и хрупкий куприт, содержащий незначительные включения сохранившегося металла. Предметы; минерализованные таким образом, бывают фрагментированы из-за хрупкости куприта или с трещинами; поверхность их покрыта неравномерными по толщине сине-зелеными продуктами коррозии;

5) предметы, в которых всю массу составляют рыхлые, светло-зеленые, полностью деструктированные продукты коррозии. В таком состоянии часто бывает тонкая чеканная и кованая бронза и медь, покрытая золотом.

Бронзовая болезнь. Особым случаем разрушения медных сплавов является рецидивная коррозия, называемая бронзовой болезнью , которая может возникать как на археологических предметах из меда и ее сплавов, так и на музейных предметах при хранении вне зависимости от того, были такие предметы очищены или нет. Первыми признаками заболевания являются появляющиеся на поверхности предмета характерные ярко-зеленые пятнышки рыхлого вещества. На очаге бронзовой болезни образуются капельки влаги, так как эти продукты коррозия гигроскопичны. Постепенно эти очаги разрастаются, покрывая все большие участки поверхности а, главное, разрушение идет вглубь металла, образуй каверну, заполненную рыхлым сыпучим веществом. После удаления этих продуктов коррозии поверхность оказывается сильно изъязвленной. Разрушение может идти с такой скоростью, что тонкий предмет оказывается полностью разрушенным за несколько месяцев. Какие же причины вызывают появление такой болезни? Их две.

Во-первых, повышенная влажность и, во-вторых, наличие на поверхности металла активаторов коррозии. Один из самых опасных активаторов - хлорид. Хлорид может попасть на поверхность музейного металла с пылью, при неправильной профилактической очистке, от соприкосновения с незащищенными руками, из загрязненной атмосферы. Инициатором коррозии являются остатки формовочной массы, плохо удаленные из внутренних полостей литых предметов. Очаги активной коррозии - хлористой меди - могут находиться на археологических предметах из медных сплавов при наличии на первый взгляд совершенно доброкачественного плотного слоя патины на поверхности сохранившегося металла. Рецидивная коррозия развивается, если изделие подвергается действию паров кислот, которые образуют с медью различные соединения, например, уксусной кислоты, выделяющейся из дерева витрин или ящиков в хранилище. Известен случай вспышки бронзовой - болезни египетского металла в Кембриджском музее, описанный известным ученым-коррозионистом Ю.Р.Эвансом, который разрабатывал специально для этого случая методику реставрации. После эвакуации во время войны вещи транспортировались в деревянной таре из сырого дерева. Пары уксусной кислоты, выделяющиеся из сырой древесины, проникая через дефекты в патине, реагируют с медным сплавом, образуя растворимую уксуснокислую медь, которая в свою очередь превращается под действием кислорода воздуха в основной карбонат. Образующаяся в результате реакции уксусная кислота снова реагирует с металлом. Реакция, таким образом, может идти до полного разрушения предмета.

3. Свойства меди и продуктов ее коррозии

Медь представляет собой тяжелый металл красного цвета, обладающий очень высокой тягучестью и ковкостью. Атомная масса меди 63,54; плотность 8,9 г/см2, температура плавления 1083°С. С различными элементами медь легко образует сплавы. В ряду напряжений металлов медь стоит правее водорода, нормальный электродный потенциал близок к потенциалу благородных металлов , поэтому химическая активность меди невелика. В нейтральной воде на поверхности меди образуется защитная пленка, которая приостанавливает дальнейшее окисление. При отсутствии кислорода и других окислителей медь не растворяется при комнатной температуре в серной кислоте при концентрации до 80%, в горячей серной кислоте медь растворяется при концентрации выше 80%. В азотной кислоте медь растворяется. В растворах соляной кислоты без доступа воздуха медь медленно окисляется, в присутствии воздуха медь реагирует с соляной кислотой очень быстро. Наличие в воздухе паров очень летучей СОЛЯНОЙ КИСЛОТЫ вызывает активную коррозию меди. Медь реагирует с растворами аммиака, хлористого аммония. Медь очень устойчива по отношению к щелочам. В растворах, щелочей на ее поверхности образуются пленки гидратированных оксидов меди, плохо растворимых в щелочах и защищающих металл от дальнейшего действия щелочи. Высока стойкость меди в различных органических растворителях. Химические свойства медных сплавов практически такие же, как у меди. Химическая активность основных составляющих продуктов коррозии на меди и медных сплавах следующая: закись меди куприт, красно-коричневого цвета, не растворяется ни в холодной, ни в горячей воде; при продолжительном кипячении медленно переходит в черную окись меди. В щелочах плохо растворяется, реагирует с кислотами. В холодной разбавленной серной кислоте разлагается с образованием металлической меди в виде мелкодисперсных частиц красно-коричневого цвета, в горячих растворах серной кислоты медленно переходит в раствор в виде средних и кислых сернокислых солей. В муравьиной кислоте растворяется плохо. Растворяется в растворах аммиака, углекислого аммония и трилона Б с образованием прочных комплексных соединений. Окись меди нерастворима ни в холодной, ни в горячей воде. Не реагирует с щелочами. Реагирует с кислотами. В растворах аммиака, углекислого аммония и в щелочном растворе сегнетовой соли практически не растворяется. Основная углекислая медь, малахит зеленого цвета, при 200°С разлагается на воду и черную окись меди. В холодной воде нерастворима, в горячей воде при кипячении разлагается с образованием окиси. В щелочах частично растворяется, частично переходит в синий гидрат окиси, быстро разлагающийся на воду и окись меди. В кислотах растворяется с бурным выделением углекислого газа. Легко растворяется в растворах углекислого аммония, аммиака и щелочном растворе сегнетовой соли.

Основная углекислая медь, азурит, синего цвета. Реакции те же, что и у малахита.

Основная сернокислая медь, синего цвета. Не растворяется ни в холодной, ни в горячей воде. Легко растворяется в кислотах, в растворах углекислого аммония и аммиака. В щелочи переходит в нерастворимый синий гидрат окиси, который разлагается с образованием окиси меди. Растворяется в щелочном растворе сегнетовой СОЛИ.

Хлористая медь бесцветная. Гигроскопична, в химическом отношении неустойчива. В холодной воде практически не растворяется. При нагревании медленно гидролизуется, образуя гидрат закиси, который затем разлагается на закись меди и воду. Растворяется в растворах углекислого аммония и аммиака. Хорошо растворяется В СОЛЯНОЙ кислоте и медленно - в муравьиной. В серной кислоте растворяется частично. В горячих растворах щелочей частично растворяется, остаток переходит в окись меди.

Основная хлорная медь, зеленого цвета» негигроскопична, нерастворима в холодной воде. При кипячении медленно разлагается с образованием черной закиси меди. Легко растворяется в кислотах, в растворах аммиака, углекислого аммония, в щелочном растворе сегнетовой соли. В щелочах частично растворяется, частично переходит в синий гидрат окиси, а затем в черную окись меди.

4. Электролитическая и электрохимическая очистка меди и ее сплавов

Общий принцип очистки от продуктов коррозии электролитическим и электрохимическим методами был описан ранее в разделе Очистка от продуктов коррозии. Рассмотрим теперь эти методы применительно к предметам из меди и медных сплавов.

Для удаления всех поверхностных коррозионных наслоений с изделия из меди или медного сплава, в котором сохранилось металлическое ядро, может быть применена электролитическая обработка. Такая обработка не должна применяться, если поверхность предмета инкрустирована другим металлом, украшена насечкой или наводкой серебром ИЛИ ЗОЛОТОМ, так как при этом методе происходит полное удаление продуктов коррозии, в том числе из тонких зазоров между основным металлом и украшением, что приведет к отслоению и утрате его. Плотность тока при обработке медных сплавов не должна быть меньше 2 А/дм2, При пониженной плотности тока на отдельных участках поверхности может образоваться плотный трудноудаляёмый слой восстановленной меди розового цвета.

При очистке электролитическим способом свинцовистых бронз, которые применялись как литейные сплавы в производстве зеркал, скульптуры, мелкой пластики, ритуальных к декоративных сосудов, поверхность может оказаться изъязвленной из-за избирательного разрушения свинца, который в металле располагается в виде глобул. При этом электролит накапливает СВИНЦОВЫЕ соли, и свинец может отложиться на поверхности предмета в виде серого налета. Рекомендуется выделять из электролита свинец на медный лист, соединенный временно с отрицательным полюсом источника тока. Осевший на медь свинец растворяют в 10%-ном растворе азотной кислоты. После промывки медный лист может быть, использован вторично.

Электрохимическая обработка при очистке изделий из медных сплавов является более мягким способом. Кроме щелочи используется 10%-ная серная кислота в сочетании с гранулированным цинком. Для ускорения процесса обработку можно вести при нагревании до 60-70°С.

5. Химическая очистка

Химическая очистка удаляет все продукта коррозии, находящиеся на поверхности металлического предмета. Применять ее допустимо только тогда, когда нет надежды сохранить коррозионный слое в стабильном состоянии. К сожалению, при реставрации археологических предметов химической очисткой пользуются излишне часто. Она проще остальных видов обработок, на нее тратится меньше времени, после полного удаления продуктов коррозии металл стабильнее, его легче хранить.

Существует много различных рецептов для химической очистки. Некоторые разработаны для очистки конкретных предметов, исходя из специфики их состояния, другие являются более универсальными. Редко реставратор пользуется всеми известными способами, В этом нет необходимости. Важно чувствовать особенности взаимодействия химических составов с металлом разной сохранности. Общим условием при химической очистке является постоянный контроль за процессом удаления продуктов коррозии. Нельзя предмет оставлять в растворе на длительное время без наблюдения. Необходимо периодически вынимать его, промывать проточной водой и очищать щетинной щеткой от труднорастворимых продуктов реакции для более равномерного протекания реакции по всей поверхности. При химической очистке погружением предмет должен быть полностью покрыт раствором, иначе по ватерлинии произойдет растравливание металла. Нагревание и перемешивание во всех случаях ускоряет процесс очистки. Все рекомендуемые растворы для очистки вырабатываются, насыщаются растворенными солями меди, поэтому они не должны использоваться длительное время, так как по мере накопления в них растворимых продуктов коррозии (раствор при этом синеет), из них на предмет начинает осаждаться медь и поверхность приобретает неестественный розовый цвет, осажденная медь трудно удаляется. Кроме того, при наличии в растворе значительного количества растворимых медных солей меняется кислотность раствора и увеличивается скорость растравливания очищаемого металла. Особенно осторожно должна проводиться химическая очистка золоченой бронзы, инкрустированных предметов, отделанных золотой или серебряной наводкой или насечкой, предметов, в которых сочетаются различные металлы.

Очистка с помощью трилона Б.

Трилон Б - двунатриевая соль этилендиаминтетрауксусной кислоты относится к группе комплексообразователей. Это одно из наиболее распространенных веществ для удаления продуктов коррозии и трудаорастворимых известковых наслоений, применяемое при реставрации предметов из медных сплавов. За рубежом шире применяется этилен-диаминтетрауксусная кислота, а не ее соль. Иногда ее сокращенно называют ЕДТА. ЕДТА мало растворима в воде. В отличие от нее растворимость ее соли - трилона Б в 50 раз выше и при 20°С составляет 108 г/л, при 80°С - 236 г/л. С помощью трилона Б можно растворить практически все нерастворимые в воде продукты коррозии, такие, как оксиды, гддроксиды, углекислые соли, фосфаты, сульфаты и, что важно, чрезвычайно трудно раст-воримую закись меди - куприт. Куприт обладает очень высокой твердостью и плотностью и удаляется с большим трудом. Этилендиаминтетрауксусная кислота выпускается в различных странах под разными наименованиями: Версен (Versen) или Версеновая кислота - США, Секвестрон (Sequestron) - Англия, Титриплекс (Titriplex) - ФРГ, Хелатон (Chelaton) - Чехословакия.

Наиболее быстро и полно удалятся продукты коррозии в горячем 10%-ном растворе трилона Б (т.е. при предельном насыщении раствора). Очищать предмет в растворе трилона Б надо очень осторожно. Нельзя оставлять предмет в растворе без наблюдения. Археологические медные сплавы практически всегда поражены межкристаллической коррозией, поэтому при длительной выдержке в трилоне Б может произойти растравливание металла и его ослабление. Музейнне не археологические предметы обрабатывать трилоном Б менее опасно. Нельзя пользоваться одним и тем же раствором длительное время. Если в растворе накопилось много солей меди (в виде комплексных соединений) и он стал синим, пользоваться им не рекомендуется, его лучше заменить свежим раствором, иначе может произойти омеднение поверхности предмета, она станет светло—розовой. После очистки раствором трилона Б предмет достаточно лишь тщательно промыть, нейтрализовывать необходимости нет.

Щелочной раствор сегнетовой соли ( В зарубежной литературе такой очищающий раствор называется щелочной солью Rashall.) быстро удаляет соли двухвалентной меди и медленно соли одновалентной меди, закись меди не растворяется. Щелочной раствор сегнетовой соли (виннокислый калий-натрий) готовят следующим образом: 50 г едкого натра растворяют в 500 мл дистиллированной годы, затем добавляют 150 г сегнетовой соли и объем доводят до 1л. Для ускорения процесса очистки раствор попеременно нагревают, не доводя до кипения, и охлаждают. Такую обработку чередуют с

крацеванием латунной щеткой, удаляя размягченные наслоения. После обработки раствор становится густо-синим, а на поверхности металла остается слой коричнево-красного куприта, крепко приставшего к металлу, иногда местами слой металлической меди, отложившейся в процессе коррозии, и воскообразная хлористая медь. Восстановленная медь плохо поддается химическому растворению и поэтому ее нужно удалить механически. Под слоем меди, как правило, находятся продукты коррозии, поэтому, несмотря на трудность, удалить ее необходимо. Затем предмет погружают в 10%-ный раствор серной кислоты для удаления оставшихся продуктов коррозии, при этом его периодически вынимают из раствора и очищают щеткой. Такую обработку проводят до полной очистки поверхности металла. Эта процедура длительна и трудоемка. Затем предмет промывают в несколько сменах дистиллированной воды, чередуя нагрев и охлаждение. Промывку ведут до тех пор, пока в промывочной воде не будут обнаруживаться хлориды.

Видоизменением этого метода является обработка в щелочном растворе сегнетовой соли вместе с перекисью водорода. Этот метод отличается тем, что окисленная перекисью водорода закись меди легко удаляется сегнетовой солью, не образуя осажденной порошкообразной меда. Однако обработка идет медленнее, чем при работе с серной кислотой. Окисляющая ванна приготовляется из щелочного раствора сегнетовой соли добавлением 100 мл перекиси водорода к каждому литру раствора. Обработка в растворе также сочетается с очисткой щеткой и промывкой в проточной воде. Обработка этим раствором происходит медленнее, чем при использовании серной кислота, но исключается опасность растравливания археологического медного сплава. Очень мягким щелочным средством является так называемый щелочной глицероль, состоящей из раствора едкого натра - 20 г/л, в который добавлено 40 мл/л глицерина. Этим составом можно очищать слабые окисленные археологические предмета.

Гексаметафосфат натрия - соль метафосфатной кислоты представдяет собой стекловидное гигроскопическое вещество, расплывающееся с течением времени во влажном воздухе. Соль хорошо растворима в воде. Однако при приготовлении раствора соль надо класть в воду небольшими порциями, непрерывно помешивая стеклянной палочкой, иначе стекловидные кристаллы прилипают ко дну и трудно растворяются. В случае получения мутного раствора его фильтруют.

Гексаметафосфат является специфическим мягким средством для очистки от продуктов коррозии меди в ее сплавов и подходит для удаления коррозионного слоя, сцементированного с известковыми соединениями, землей, глиной, так как он образует хорошо растворимые комплексные соединения с ионами кальция, магния, бария, кремния, алюминия, входящими в состав почвенных отложений. Использовать его рекомендуется как на начальных стадиях обработки для разрыхления поверхностного слоя, так и на последующих стадиях очистки.

Гексаметафосфат натрия при растворении в воде образует слабокислый раствор. С увеличением концентрации кислотность увеличивается, PH 20%-ного раствора равна 4,0. В зависимости от концентрации и температуры раствора гексаметафосфат натрия действует различно. Холодные раствора только размягчают толстые коррозионные наслоения, а горячие растворяют все медные соли при длительном взаимодействии их с реагентом. Закись меди полностью не удаляется даже горячим 20%-ным раствором в течение длительного времени. Очистка раствором гексаметафосфата натрия весьма длительный процесс, занимающий в некоторых случаях несколько недель.

Продукты реакции гексаметафосфата с солями меди имеют черный цвет. Они легко удаляются щеткой под струей воды. После обработки длительной промывки не требуется, достаточно лишь промыть в дистиллированной воде, так как этот реактив является замедлителем коррозии.

Буферный раствор с рН - 4 состоит из 25 г/л лимонной кислоты и 14 мл/л аммиака. Буферированнем очищающих растворов снижается растравливаемость металла. Обрабатывать этим методом можно частично минерализованную бронзу.

http://antikvarus.ucoz.ru/publ/restavra … ii/1-1-0-5

+2

2

Алексей, спасибо за полезный материал.  :cool:

0

3

Не за что :)

0

4

Теория  Чистка монет
Как правильно чистить монеты и другие находки. Какие есть средства и способы чистки монет. Реставрация и консервация.

Большинство монет, предметы металлопластики, награды и другие находки попадают к нам в руки в очень плохом сохране. Зачастую невозможно даже прочитать номинал старинной монеты и год чеканки. Степень сохранности монеты зависит от условий, в которых она находилась. Монеты, найденные в песке, как правило, отличаются хорошим сохраном, а монеты, найденные в кислой почве могут быть безвозвратно потеряны. Чем больше удобрялось поле, на котором была найдена монета, тем хуже ее состояние. Наша задача спасти то, что еще можно спасти и в этом разделе мы постараемся рассказать о том как лучше чистить монеты и другие старинные реликвии и как чистить не стоит. Обратите особое внимание на статьи, посвященные консервации монет, так как неправильные условия хранения также могут испортить монеты.

Перед началом чистки монеты задайте себе самый главный вопрос: "А нужно ли ее чистить?". Если вы хотите чистить монету от темной зеленой патины или если монета в черной патине, то на выходе вы получите 50% от былого рельефа. Черная патина начинает осыпаться (вместе с рельефом) даже при мытье под струей воды. К таким монетам лучше даже не прикасаться. Выбор средств и способа чистки полностью зависит от типа окислов, желаемого результата и целей чистки. Если цель подготовить монету к продаже, то сначала посоветуйтесь с предполагаемыми покупателями. Некоторые могут отказаться от покупки и цена может снизиться, если монета будет почищена. И помните еще, что "убитые" монеты невозможно восстановить, если монета съедена окислами, то используйте ее для экспериментов по чистке. Но редкие монеты лучше отдать специалистам реставраторам, не стоит смывать с них даже следы земли и песка.

Необходимо с большой осторожностью относиться к чистке старинных монет. В частности, надо сделать правильный выбор реактива, необходимого для очистки от окислов, так как реактив, удачно примененный для одних монет, может оказаться непригодным для других, т. е. приведет к их уничтожению или к серьезным искажениям их вида. Желательно добиваться и сохранения „благородной патины" — своеобразного аттестата древности предметов.

Основными способами очистки монет являются механический, химический, электрохимический и ультразвуковой. При реставрации практикуется чаще всего сочетание механического способа с другими.

Механическая обработка заключается в удалении поверхностных наслоений: земли, песка и др. Она производится с помощью различных щеточек (щетинной, латунной и из стеклянного волокна), скальпелей и зубоврачебных боров различных размеров. В качестве латунной щетки можно использовать обычную щетку для чистки обувной замши. Но применять упомянутые инструменты необходимо с большой осторожностью. При неумелом и грубом использовании их легко нанести царапины, которые в какой-то мере исказят рельеф монеты. Химическим способом, в сочетании с механическим, очищаются монеты, покрытые толстым слоем окислов, но сохранившие металлическую основу, а также монеты из золота и серебра.

Мы будем рады, если вы поделитесь с нами своими способами чистки монет, своим опытом и знаниями.

Чистка серебряных монет
Выбор метода чистки зависит от степени окисленности и пробы серебра. Если монеты высокой пробы долгое время пребывали в земле и покрылись плотным слоем окислов, их можно поместить на 1-2 часа в раствор нашатырного спирта (90% воды, 10% аммиака). При отсутствии нашатырного спирта можно приготовить содовый раствор: на 100 г воды 30 г соды (примерно 2 чайных ложки) пищевой соды. Монеты опускаются в раствор на несколько часов до полного растворения окислов. Процесс можно ускорить, если подогревать раствор до кипения и периодически чистить окисленные места мягкой зубной щеткой. Но помните, что любое механическое воздействие на серебро оставляет микроцарапины, что существенно снижает стоимость монеты.

Монеты высокой пробы со слабыми следами окисления можно чистить кашицей из нашатырного спирта, пищевой соды и зубной пасты. Такая смесь должна ощущаться пальцами в виде жижи и не содержать твердых, царапающих частиц (зубную пасту лучше использовать отечественную, содержащую оксид кремния не оставляющий микроцарапин, в отличии от карбоната кальция содержащегося в импортных пастах).

Монеты из низкопробных сплавов серебра при окислении зеленеют. Для их чистки наиболее подходит 10%-й раствор трилона Б или погружение в воду с растворенным хозяйственным мылом. После того как зеленый слой растворится и сойдет, чистку следует продолжить чистящей кашицей.

Некоторые коллекционеры используют средства бытовой химии с кислотным действующим веществом (соляная или щавелевая кислота, например: Cilit). Эти растворы способны растворить зеленые окислы за одну минуту, но уничтожают и темную патину, "налет старины", делая монету блестящей.

Не стоит использовать для чистки медных и серебряных монет сильные реактивы типа азотной и серной кислоты. Вместе с окислами они уничтожают и рисунок монеты, особенно мелкие его детали. Монета приобретает неестественный цвет и блеск.

Очистка серебряных монет может производится преимущественно химическим способом. Такая очистка сводится к удалению с поверхности окислов и солей других металлов, главным образом, медных соединений. Медные соединения на серебряных монетах узнают по зеленому цвету. Для их удаления надо положить монету в стеклянный сосуд или в фарфоровую выпаривательную чашку и залить 5%-ным раствором серной кислоты. Для ускорения процесса можно вести очистку с подогревом раствора, время от времени вынимая монету, промывая водой (лучше проточной), затем счищая механически размягченные соли щеточками — щетинными или из стеклянного волокна. При неоднократных операциях такого рода наслоения постепенно уменьшаются и вовсе исчезают. Можно применять также 5— 10%-ный раствор муравьиной кислоты (лучше с подогревом до 50—70°). Он хорошо размягчает и снимает окислы и углекислые соединения меди на серебре. Чем горячее раствор, тем сильнее его действие. Образования фиолетово-серого рогового серебра отличаются исключительной мягкостью. У таких монет часто отсутствует металлическое ядро, и при очистке не исключена возможность полной их утраты. Но если корка рогового серебра не слишком толстая, монету можно погрузить в 5—10%-ный раствор аммиака или хлористого аммония. В этих растворах роговое серебро размягчается, после чего осторожно удаляется механическим способом.

Чистка кладовых медных монет
Часто монеты в каладх находят скипевшимися, слипшимися, то есть образующими благодаря соединяющим их окислам бесформенную массу. Не рекомендуем разъединять такие монеты путем накаливания и опускания в холодную воду. Во избежание утрат следует поместить такой комок в 5—10%-ный раствор едкого натра и подогреть до 30—50°. После этого монеты можно отделить друг от друга, определить состояние каждой из них и приступить к чистке.

Чистка медных монет
Чтобы удалить с медных монет вишнево-красный налет закиси меди, следует опустить монеты в 5—15%-ный раствор аммиака, но так, чтобы они полностью погрузились в раствор, так как в соприкосновении с воздухом действие аммиака на металл оказывается разрушительным. Вместо аммиака можно с успехом использовать 5—10%-ный раствор углекислого аммония, который менее агрессивен по отношению к меди и бронзе. Если медные монеты покрыты солями, состоящими из углекислой меди (темно-зеленый цвет), эти наслоения можно удалять 5—10%-ным раствором лимонной кислоты. Она медленно растворяет соли и окислы меди и не растворяет металлическую медь.

Встречаются также медные монеты, покрытые желтовато-бледным налетом углекислого свинца. Это говорит о том, что либо в сплаве самих монет много свинца, либо они лежали в земле со свинцовыми предметами. Для удаления такого налета следует применить 10%-ный раствор уксусной кислоты, легко растворяющей углекислый свинец.

В качестве размягчителя окислов на медных монетах может служить гексаметафосфат натрия (Г.М.Ф.Н.). Это стекловидная, хорошо растворимая соль. Растворение ее нужно вести при непрерывном помешивании, так как стекловидная масса прилипает ко дну сосуда. Г.М.Ф.Н. применяется в виде 5—20%-ного раствора. В холодном состоянии он действует медленно. Чтобы ускорить процесс, необходимо нагревать раствор до 60—80°. Г.М.Ф.Н. абсолютно безопасен для металла и благодаря медленному действию позволяет легко прослеживать ход очистки и своевременно использовать механическую обработку.

Реставратору часто приходится иметь дело с монетами, полностью минерализованными, которые не всегда удается не только раскрыть, но и сохранить. Успех обработки в большой степени зависит от того, какие соединения меди заменили металл в результате сложных процессов минерализации. Сначала следует осторожно, без физического напряжения, удалить поверхностные наслоения. Если таким образом удается выявить тот или иной орнамент, надпись и т. п., то этим следует ограничиться. Если механическая обработка не „раскрыла" монету, применяют 5%-ный раствор едкого натра или углекислого аммония.

Учитывая, что степень сохранности монет, поступающих на реставрацию, различна, трудно дать определенные рекомендации относительно времени их пребывания в том или другом реактиве. Поэтому периодически вынимая монеты из раствора, следует постепенно снимать механическим способом размягченные слои, способствуя этим ускорению процесса расчистки.

К монетам, сохранившим металлическое ядро, но имеющим очень плотные, твердые, „толстые" окислы, а также к хрупким монетам можно применить метод электрохимического восстановления. Этот метод не требует специальной аппаратуры. Для электрохимических процессов обычно употребляется цинк и алюминий. Практика показала, что для очистки монет лучше всего применять пластинки из листового цинка или алюминия, с пробитыми в них отверстиями (как у терки). В качестве электролита берется едкий натр или муравьиная кислота 5—10%-ной концентрации. На дно стеклянного сосуда (в нем хорошо заметен процесс восстановления) кладется упомянутая цинковая либо алюминиевая пластина. На „терчатую" поверхность пластины раскладываются одна к другой несколько монет, которые накрываются „терчатой" поверхностью другой такой же пластины. После этого сосуд заполняется приготовленным раствором так, чтобы монеты с пластинами были полностью скрыты.

Обработка указанным способом должна проводиться особенно тщательно и осторожно, с частым контролем за ходом процесса. Механически снимая восстановленные и размягченные продукты коррозии, осматривают монету в лупу для выяснения степени ее расчистки. После осмотра, если это необходимо для более четкого выявления изображения, она вновь подвергается электрохимической обработке.

Заметим, что золотые и „новые" монеты, не побывавшие в земле, а лишь находившиеся долгое время в обращении, чистятся легко и быстро. С них необходимо удалить жировые вещества ацетоном, бензином или спиртом и опустить в 5—10%-ный раствор серной, лимонной или муравьиной кислоты.

После очистки монет тем или иным способом следует производить тщательную промывку (вываривание) их в нескольких сменах кипящей дистиллированной воды до нейтральной реакции воды по универсальному индикатору и полного удаления растворимых хлоридов: охлажденная проба последней промывной воды не должна мутнеть от введения капли 1,7%- ного раствора азотнокислого серебра.

Вслед за промывкой производится просушка монет в ацетоне, затем в спирте в течение 30—60 минут. С этой целью можно использовать также термостат (специальный сушильный шкаф), выдерживая в нем монеты не более двух часов при температуре не выше 100° С.

Медные монеты, имевшие признаки бронзовой болезни, после очистки вновь помещаются в увлажнительную камеру. Если в отдельных местах появляются капли хлористой меди, эти очаги тщательно вычищаются механически, и монеты повторно вывариваются.

Если медные монеты после очистки имеют неприятный блеск, можно искусственно создать патину от светлого до темно-коричневого цвета. Для этого надо на один литр дистиллированной воды взять 50 г медного купороса и 5 г марганцовокислого калия. В приготовленный раствор, нагретый до 70—80°, опустить монеты и держать до получения желаемого оттенка.

После просушки монеты необходимо законсервировать защитным покрытием — парафином либо синтетическими смолами. Для этого можно рекомендовать 5%-ные растворы полибутилметакрилата в ацетоне, толуоле или ксилоле и поливинилбутираля в спирте или смеси спирта с бензолом (1:1).

После консервации необходимо хранить монеты не в „кучках", а в отдельных коробочках или лотках, имеющих отсеки. В таком виде они не будут соприкасаться и лучше сохранят защитное покрытие. Кроме того, при осмотре реставрированных монет будет легче выявить те из них, на которых вновь появились очаги коррозии.

--------------------------------------------------------------------------------

Народные способы чистки монет.
Данные способы нельзя считать правильной чисткой монет, но для тех монет которые в простонародье называются "какаликами" вполне подойдут и эти способы, как менее трудозатратные и более простые.

Для чистки медных монет можно приготовить мыльный раствор. Возьмите кусок обычного хозяйственного мыла и настругайте его в ванночку. Потом залейте горячей водой и дайте настояться. Должна образоваться густая склизкая масса. В нее опустите монеты. Желательно чтобы монеты не касались друг-друга. Оставьте монеты на неделю, месяц или дольше. Периодически вынимайте их и чистите зубной щеткой.

Если вы считаете что монете уже ничего не грозит, то есть сделать ее хуже уже невозможно - то воспользуйтесь самым быстрым способом - силит и доместос. Силит - это кислотный моющий раствор. Рекомендую приобрести Силит с раствором прозрачного цвета. Не берите Силит "2 по цене 1". Кислота разъест весь верхний слой монеты включая окислы и часть самой монеты. Тут главное не передержать. В среднем на чистку одной монеты уйдет от 1 минуты до трех-пяти. Если забыть монету в таком растворе, то вы получите яркий желтенький блестящий кружочек. Доместос лучше брать красный, это щелочной раствор, поэтому он более щадящий. Монета приобретает темный окрас. Растворяются только окислы. По времени - также важно не передержать. Достаточно 1-5 минут.

Можете экспериментировать с другими моющими средствами. Главное, что вам важно знать, что растворы делятся на два типа: кислотные и щелочные. Если в составе нет ни того, ни другого, то раствор окажется бесполезным.

Никогда не применяйте такие мощные средства к редким монетам или монетам с сохранившимся рельефом. Данный способ отлично подходит для чистки конины.

Монету после чистки кислотой можно натереть Серной мазью (продается в аптеках, стоит не дорого). Блестящая монета сразу станет темной. Не мешайте мазь с мылом. Сначала поэкспериментируйте на какаликах.

0


Вы здесь » САХАЛИНСКИЙ ПОИСКОВИК » Консервирование и Реставрация » Реставрация изделий из меди и сплавов из меди.